
2132 AIAA JOURNAL VOL. 7, NO. 11

Matrix Algorithm for Structural Modification Based
upon the Parallel Element Concept

JAROSLAW SOBIESZCZANSKI*
Parks College of Aeronautical Technology, St. Louis University, St. Louis, Mo.

This paper deals with the reduction of the computer time needed to perform arithmetical
operations for the structural analysis consisting of an original solution of a complex redundant
structure, followed by a number of consecutive modifications. A matrix algorithm is derived
in the paper for this purpose from the so-called parallel element method and discussed in
connection with the Force or Displacement methods used for the original solution. This
algorithm is compared with the so-called "initial strain" method of modification. Com-
puter time for all the algorithms is evaluated showing the parallel element algorithm as much
more economic than the initial strain approach for a larger number of consecutive modifi-
cations. Computer accuracy tests are reported and two numerical examples are provided.
Applications are pointed out for structural optimization, nonlinear analysis and computer-
aided design.

Nomenclature

I = unit matrix
Bx(l X n) = matrix of element forces statically equivalent

to the unit redundancies
F(l x 1) — quasi-diagonal flexibility matrix of unassembled

structure
K(l X I) = quasi-diagonal stiffness matrix of unassembled

structure
Bfo(l X m) = matrix of element forces statically equivalent

to the unit loadings
f(m X I ) = vector of loading parameters
C(l X s) = matrix of element forces statically equivalent to

the unit dummy forces associated with the
displacements d

r = number of elastic degrees of freedom (nodal dis-
placements) that is equal to the number of
load components statically permissible for
the given structure

A (I X T) = matrix relating element deformations to the
nodal displacements, known also as a matrix
of interconnections

R(r X m) '= matrix relating all the load components, sta-
tically possible for the given structure, to
the loading parameters contained in /

&F(a X CL) = quasidiagonal flexibility matrix of the unas-
sembled new elements

Byo(l X a) = matrix of element forces statically equivalent
to the interaction forces q corresponding to

_ the unit values of y
Byo(r X a) = matrix relating all the statically possible load

components to the forces of interaction q
represented by y

Subscripts
1 = the structure before modification
2 = the structure after modification

1. Introduction

RECENT developments in computer-aided design, struc-
tural optimization, and nonlinear analysis has brought

a renewed interest in the structural modification methods.
In the computer-aided design, especially if the screen-light
pen type of input/output is used, the length of time required
by modification of the structure displayed on screen is an

essential factor in this direct man-machine contact. In
structural optimization and nonlinear analysis performed by
gradual changes of the initial solution, computer time re-
quired is often found prohibitive if each change of a complex
redundant structure is to be accomplished by repeating the
computation ab initio.

Hence, the obvious importance of the structural modifica-
tion algorithms which reduce the modification computer
time by several orders of magnitude. Discussion of a certain
algorithm of this class in comparison with an alternative one
is the subject of this paper.

2. Formulation of the Problem

A complex, redundant structure has been solved so that
its element forces p have been related to the external loadings
/ by a matrix B:

Pi = Bf (1)
a similar relationship has been found for the nodal displace-
ments d:

= Fcf (la)
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After this solution has been obtained the structure undergoes
a modification defined as follows: 1) alteration of the cross-
section properties (area, moment of inertia, etc.) of one or
more elements of the structure; 2) adding new structural
elements between existing nodal points; 3) change in the
loading cases considered.

The objective to be achieved is to compute new element
forces p% and nodal displacements cfe for the modified structure,
by means of a number of arithmetical operations significantly
smaller than that which would have to be carried out if the
structure were to be completely recalculated ab initio. An
additional goal is to organize the modification algorithm in a
way so that it will be ready for the next modification once the
current one has been completed. This is important if more
than one modification is to be performed, as it takes place
in the majority of practical applications. Finally the algo-
rithm should not introduce unacceptable error into the
calculation.

3. Solution of Original Structure

Let us assume that the original solution has been obtained
by means of matrix force or displacement methods in the
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following standard forms respectively:
force method

Pl = [I - B^BSFJBJ-i

displacement method

cfe =

Introducing notation
Ref. 8) and Zi =
and (4) in the form

= I

(2)

(3)

(4)

(5)

- Bx (Bx'FiBx)-1 Bx*Fi (see
)"1, one may rewrite Eqs. (2)

Zi(l X X r) (6)

The matrices J5X and Bfo considered previously may be, of
course, generated automatically by a routine procedure of a
"structure cutter " type.13

4. Modification Algorithm

Numerous papers have been published on the modification
problem. Generally speaking they fall into one of three
categories: 1) those based upon the concept of parallel
element1'2'4'6-9; 2) those based upon the initial strain ap-
proach3'5'6'7'12'13; and 3) those based upon an algebraical
approach, dealing with influence of the matrix element change
on the matrix inverse.10-11

The initial strain approach (ISA) method is best known and
is widely accepted in practice. It will be taken into account
further for purposes of comparison. The parallel element
concept is adopted by the present writer as a basis for a modi-
fication algorithm, developed in a new form below especially
for the purpose of this paper. The methods of the last cate-
gory, dealing only with a fragment of the whole problem,
which contain many operations other than merely matrix in-
version, are not discussed here.

4.1 Parallel Element Concept in Matrix Form

Under an approach known in the literature as a parallel
element concept,1-2'4'6 analogous to the compensation theorem
used in network theory,9 modification of a structural member
is interpreted as a parallel superposition of an additional ele-
ment on the altered one. Algebraical sum of the stiffnesses
of the original and new elements produces the desired stiffness
of the modified element.

The new element may also be added between the nodal
points that were not connected directly. Thus, the algorithm
is capable of handling a modification that not only alters the
existing elements but also introduces the new ones.

The problem is then reduced to the calculation of the
forces of interaction (q) acting between the added element
and original structure from the conditions of equilibrium and
compatibility at the nodes between which the new element is
added. Let us satisfy first the conditions of equilibrium by
selecting part of the forces q as statically independent forces
y, according to the relationship

= Sy (7)

The independent forces of interaction y will be referred to as
modification unknowns.

The desired modification is described by means of matrices
AF and By0 established as a known input. Creation of AF
and Byo is a relatively straightforward matter, as shown in
the following examples.

Examples of the modifications by means of a parallel ele-
ment are shown in Fig. 1 for the in-plane loaded framework
(Fig. la), truss (Fig. Ib), and thin-wall structure for which
Figs. Ic and Id show the modifications of the stiffener (longe-
ron) and shear panel, respectively.

In all the figures the parallel elements are shown together
with the forces of interaction. The example of the frame-
work may now be discussed in a somewhat greater detail in
order to demonstrate the forces and matrices introduced
earlier. The matrix of the interaction forces may be defined
as:

0 = (2/1^2, (2/1 + 2/2)/6, - (2/1 + 2/2)/6}

if the axial deformation is neglected as it usually is in frame-
work analysis.

The forces 2/1,2/2 may be selected as statically independent
ones and grouped into a vector

y = (2/1,2/2}
related to q by means of Eq. 7 in which the matrix

S =
' 1

0
1/6

-1/6

0
1
1/6

-1/6

represents the equilibrium solution for the beam (axial force
excluded) according to the sign convention shown in the
Fig. la.

As far as matrix AF is concerned it represents the flexibility
of the parallel element so it has to have the same character
as the matrix FJJ of the beam. The flexibility matrix F,-,-
of the isolated beam may be written with respect to the end
moments chosen as the element forces

GEI -I

Naturally, the choice of element forces for the added ele-
ment and the element to be modified must be the same, so
the values yi,y% will also be end moments as shown in Fig. la.

Compatibility between the original and parallel beam re-
quires a flexibility matrix of the latter in form

QEIW
r 2 -n
L-i 2]

where W = dimensionless coefficient.
The W coefficient may be found easily from the principle,

according to which the flexibilities of the parallel elements are
added as reciprocals.

Hence, to stiffen the beam v times, or, more precisely, to
make (El)2 = v - (EI)i one has to put W = v — I : for in-
stance to stiffen twice, v = 2, W = 1; to weaken twice v =
i, W = -*, etc.

If more than one element is modified the AF matrix takes
a quasi-diagonal form such as matrix FI. For two (even not
adjacent) beams modified for the framework

It is important with respect to the computer time that no
additional matrix operations are required to create the matrix
A/*7, because its submatrices AF// have the same form as the
matrices of elements to be modified, and therefore, may be
generated by the same standard procedure that was applied
for the creation of matrix FI in the original solution without
any additional storage requirements. Thus, the coefficients
W and the numbers of the elements to be modified will suffice
as the description of the required modification.

The matrix By0 contains the values of element forces stat-
ically equivalent to the unit values of y forces. Thus, it



2134 J. SOBIESZCZANSKI AIAA JOURNAL

Positive Element Forces

Fig. la Example of modification by parallel element—
fragment of a framework.

Fig. Ib Example of
modification by parallel

element-—-truss.

Fig. lc Example of modification by parallel element-
stiffened panel, stiffener modified.

Fig. Id Example of modification by parallel element-
stiffened panel, shear panel modified.

is constituted of "I" rows and "a" columns. In the creation
of this matrix one need not of course, be bound by the set
of "cuts" used to establish the matrices Bfo and Bx of the
original solution. Additional '"cuts" may be introduced
in order to limit the nonzero elements of the matrix ByQ to
only those which represent the element to be modified. For
the framework example (Fig. la), it was achieved by releas-
ing the ends A,B by means of the fictitious pin joints. The
nonzero portion of the matrix ByQ is then

B,(
A
B o

o
-i

o

This technique may always be used and its application is even
more apparent for the other examples shown in Fig. 1.
Should some other elements be modified simultaneously, the
nonzero elements would be located in the matrix ByQ accord-
ingly. Their number would always be a. There is an ex-
ception for a modification consisting in adding a new struc-
tural element where none existed before. In this case, the
elements of the By0 matrix may be nonzero only for that seg-
ment, or bay, of the structure which contains the new element
provided that the structure is rigid in itself, as virtually all
flying structures are, without attachment to an external
foundation.

The practical consequence of this is that the matrix Byo
may be created without any additional matrix operations by
a standard subroutine fed with a number of the element to
be modified and a code number providing information as to
the element (beam, rod, stiff ener, panel, etc.). The matrix
EM being very sparsely populated, need not be stored with
all the zeros. The nonzero elements are rather stored together
with their addresses. Several specialized techniques8 have
been developed for such sparsely populated matrices. In
conclusion one may state that no additional time for arith-
metical operations is required to create the matrices AF and
ByQ. There will be a certain time needed to execute the
standard routines creating them, but as in all the so-called
compute-bound jobs, it will be very small in comparison with
the time of the operations on large matrices, involved in the
original solution which would have to be repeated for each
modification, should it be analyzed by recomputation ab
initio.

Another practical conclusion, in such a case, is that the
additional storage needed for the matrices AF and By0 is, in
view of the aforementioned considerations, negligibly small
in comparison with that required by the large matrices rep-
resenting the original structure, therefore their introduction
does not require any additional communication with the
storage devices. Obviously the modification may include
simultaneous alteration of many elements all represented by
matrices AF and ByQ.

A compatibility equation may now be written according
to the virtual work principle, assuming that the original



NOVEMBER 1969 MATRIX ALGORITHM FOR STRUCTURAL MODIFICATION 2135

solution has been obtained by means of the force method
(FM)

hence

y

+

- ( AF

+ = 0 (8)

•/ (9)

Element forces in the modified structure may then be ex-
pressed by superposition

P2,i = PI + ZiByoy (10)
for those elements or original structure which remain un-
altered,

_ i nr T> __ ni (~l 1 "\

for those elements of original structure which were made to
cooperate through parallel action with the new elements, and

£2,3 = y (12)
for these new elements which were added where no original
element existed.

Introducing matrices

G = and D = [AF + (13)
we may express both p2,i and p2,2 in form of a vector p2 ac-
cording to Eqs. (9-11)

p2 = - V)DG] Bfof (14)
where V is a "dispersing" zero-unit matrix, required by ma-
trix calculus formalism to carry out the superposition (11)
where the number of elements of the vector y is incompatible
with the two other superimposed vectors. In actual pro-
graming the matrix V does not appear and is replaced by a
proper addressing.

Equation (14) may be further abbreviated by the notation

- T)DG]
which yields

= Z2Bf0f

(15)

(16)
The formulas corresponding to the Eqs. (15) and (16) may

be easily obtained if the displacement method has been used
for the original solution by substituting in Eqs. (8-11) the
product ZiBy0 by ZiByQ and ZiB/Q by ZiR.

Matrix By0 replaces here the input matrix ByQ as the part
of description of the modification and is established with
respect to the forces y in similar way as matrix R is estab-
lished with respect to forces /.

Matrix F2 for the modified structure may be obtained in a
straightforward manner by summation of the stiffnesses of the
parallel elements

where HI and H2 play the same role as V in Eq. (14).
Operation (17), written according to the matrix formalism,

is not carried out in that way in actual programing, because
it may be simplified to the computation of the coefficient W,
as described in the example of framework modification in
Sec. 4.1 (see Fig. la).

Displacements of the modified structure may now be re-
computed in a straightforward manner

d2 = CtF2Z2Bfof (18)
Should the loading change occur, it may easily be accounted
for by a simple change of elements of matrices Bfo and /
in Eqs. (9, 16, and 18).

Thus all the objectives set in Sec. 2 are achieved, including
the last one, because Z2 and F2 from Eqs. (15) and (16) may
be substituted for Zi and Fi in Eqs. (13-15, and 17), in order
to carry out the next consecutive modification.

Elements that were added to the structure where no
original element existed before (let us refer to them as to the
elements of category 3 have to be discussed separately.
Their element forces ^2,3 are expressed by Eq. (12), only for
the state of the structure after this modification in which
they were added.

For each next modification the forces p2,3 may be expressed

where the term in parentheses represents deformations of
the modified structure associated with the independent forces
of interaction between the elements of category 3 and the
structure. Matrix ByQ3 consists of element forces in the cut
structure corresponding to the unit values of the aforemen-
tioned independent forces of interaction, whereas F3 is a
submatrix of V corresponding to the elements of category 3.

4.2 Alternative Algorithm Resulting from the Initial
Strain Approach

From the concept known in the literature as the "initial
strain approach" one obtains forces in a modified structure as

p2 = [B -
where the matrices

D = (Bx*F

+ (20) t

), B = BfQ-
BXJ and Bj are the submatrices of Bx and B corresponding to
j modified elements. The matrices D and BX]- need not be
created for each modification since they are assumed to be
available from the initial solution.

Essential differences between the parallel element algorithm
[Eqs. (13, 15, and 16)] and this approach may already be
seen. In the parallel element method (PEM) the original
solution is updated each time the structure is modified form-
ing a closed loop from Eq. (17) to Eq. (13).

Under the initial strain approach each consecutive modifi-
cation is referred always to the very first original solution
represented in Eq. (20) by the matrices D and B which re-
main the same each time that equation is applied to a con-
secutive modification. Thus, in performing modification
number j we have to take into account in AF and BXJ all pre-
vious modifications from 1 to j which affected structural ele-
ments other than those altered in current modification j.
In other words, even if jth consecutive modification is simple
and is to alter only one member, the computation has to be
conducted in such a way as if all the alterations from 1 to
jih were simultaneously imposed on the original structure,
in form of a single complex modification.

Therefore, the total number of simple operations (com-
puter time) required to complete a series of j consecutive
modifications by means of Eq. (20) will increase very rapidly
with j (proportional to j* as results from detailed analysis)
while it increased merely proportional to j in the parallel
element algorithm. This difference is of decisive importance
if the two alternatives are to be compared as shown in the
next section.

To obtain a comparison between the methods of modifica-
tion we shall investigate now the number of simple operations
involved in the algorithm proposed here in the form of Eqs.
(13) and (14), the initial strain formula Eq. (20), and original
solutions Eqs. (2-5).

5. Comparison of the Required Number
of Simple Operations

The number of simple operations required to perform the
elementary matrix operations is presented in Table I.11-15

t For derivation of the formula see, for instance, Ref. 3 or
Ref. 7.
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p2 = ([I - Bx(B,'FJ*f)^Bx'Fi] +
{[/ - B^BsFiBJ-WSFAB* - 7}

{AF + BjFdl - B^
Fig. 2 Framework used as

example 2.

The number of operations has been computed according
to Table 1 for Eqs. (2, 4, 13, 14, and 20). According
to the Section 4.1, no additional arithmetical operations for
creation of the matrices AF and Byo were taken into account.

The total computer time of the whole operation will depend
not only on the number of simple arithmetical operations
considered here, but may be affected by the time of com-
munication with the storage devices. This aspect of the
comparison of the methods will be taken into account in a
further discussion.

The results for the comparison of the number of operations
are presented in Table 2 in two versions designated * and **.
Version * corresponds to all matrices treated as the full ones.
In version ** the sparsity of population was taken into ac-
count for matrices Fi, Ki, and A. That sparsity is character-
ized by the constants c and g. The constant c denotes di-
mensions of the submatrices of the matrices Fi and Ki which
are sparsely populated because of their quasi-diagonal struc-
ture. In case of a plane framework assembled of two-moment
one-axial force beams (no torsion considered) each submatrix
will have 3 X 3 dimensions, hence, c == 3.

The constant g denotes the number of element deformations
generated by a single displacement of a nodal point. This
number determines the sparsity of matrix A. For a node
where four beams of a framework are interconnected (e.g.,
joint A, Fig. la) that number is four, hence the value of g in
Table 2.

One has also to elaborate on the way the number of opera-
tions were counted. Namely, it is important to realize that
there is no need to program the actual computation exactly
in the same way which may be convenient for the derivation
of the expressions involved in that computation. This
would usually lead to the unnecessarily large number of
operations and waste of computer time, since in the theo-
retical derivations one wants to keep the expressions compact,
while in the actual computation one wants to minimize the
number of arithmetical operations by choosing a sequence of
matrix operations, to make the dimensions of the inter-
mediate matrices as small as possible. That freedom of
choice is due to the associative law for multiple matrix multi-
plications (A'B-C . . . etc.) and is restricted by the storage
and other constraints resulting from the particular language
and hardware properties.t

Matrix Zi and Z% [in the expressions (14) and (15)] pro-
vides good example of the preceding. They abbreviate the
notation but they are large (I X I) matrices and their utiliza-
tion as such, in large computations would raise the highest
power of I in the expressions of Table 3 from I2 to P. It
might also saturate the operational memory, requiring in-
tensive communication with the storage devices. There-
fore, Eq. (14) is more efficiently programed on the basis of its
full, somewhat lengthy form obtained with respect to Eqs.
(2) and (13);

-f (21)
In choosing the most ecnomical sequence of operations, re-

flected in the expressions of the Table 2, it has been assumed
that usually 1 > n ^> a, I ^> m, and r^>m.

In Eq. (21), the matrices Bx, (BjFiBx)-1, Bfo are assumed
available, as they have been created for the original solution.
FI is also known either for the original structure, if the modi-
fication is a first one, or from Eq. (17), if it is not. In larger
computations, a communication with the storage devices
may be necessary in order to make these matrices available.
Additional computer time required by this is not reflected
in Tables 2 and 3 but is discussed separately in Sec. 6.

Since for simple modification a <3C n and a <£ r the two con-
sidered modification algorithms clearly will require computer
time much shorter than that which would have to be used for
repeating the original solution. It may also be noted how
the sparsity of population of the matrices may reduce the
number of operations. The required computer times of the
arithmetical operations may be evaluated and compared for
each individual case by means of the aforementioned formulas
for each algorithm in question [including force vs displace-
ment method (DM)]. Two numerical examples shown in
Tables 3 and 4 provide an idea as to the order of magnitude of
the computer time reduction. The semimonocoque fuselage
used as example 1 (Table 3) has been idealized as an assem-
blage of shear panels (one shear flow), longerons (two axial end
forces), and straightened ring segments (two axial end forces
and two end moments). Three elastic degrees of freedom
(radial and axial displacement, and rotation in the ring
plane) have been assumed for each nodal point (ring-longeron
intersection) and the following symbols were used: z (num-
ber of rings), u (number of longerons), hence the number of
panels is u(z — 1). It has also been assumed that each modi-
fication alters a single shear panel only. To make the com-
parison possible the time required for simple addition of two
numbers has been denoted t and one has assumed that simple
multiplication required 3t (this is an average estimate; for
IBM 360-50, for instance, it is 3.15< ; see Ref. 14). The nu-
merical estimates shown in Tables 3 and 4 apply to the rela-
tively large computational problem (p,u,z larger than 4), for
which mainly the whole discussion is relevant. This permits
one to neglect the lower power terms in the formulas of Table
2, hence the compact expressions in Tables 3 and 4.

As found from the examples in Tables 3 and 4, application
of a proper modification algorithm provides very radical
computer time savings. Time savings increase with the
number of consecutive modifications and with the number
of structural elements.

The influence of the parameter a is shown in Table 3 for
example 1. As one could expect, the larger the a (more
elements altered in a single modification) the smaller the
time savings. For each combination of the original structure

Table 1 Number of simple arithmetical operations
in matrix operations

Simple arithmetical operation.

t It is well known to those involved in numerical work, but
disregarded in mathematical texts, that number of operations to
multiply for instance 10A10-10£10- ™Cl is much smaller for A(BC)
than for (AB)C.

Matrix
operation
n n

mA + ™B
n p

™A'nB
n

nA~la

Multiplication

0

mnp

n3 - 1

Addition

mn

mp(n — 1)

n3 - 2n2 + n

Formation of
reciprocals

0

0

n

a Gauss elimination method.20
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Table 2 Number of simple arithmetical operations for: force method (FM), displacement method (DM), parallel
element method (PEM), initial strain approach (ISA)

Simple arithmetical operation

Method

FM

DM

PEM

ISA

Eq.

(2)

(4)

(13)

(14)

(20)

Version

* Z2(3n

** l*(n -
Im

* I2(r -
(I-

** r3 1

m
* 2l2(a

l(a
** l\2a

m
* 2a3 H

(m

Multiplication

4-1)4- 2nzl 4- n3 4- Zra - 1

-f 1) 4- 2cln 4- 2ln2 4- n3 +
- 1

f 1) 4- r2(Z 4- 1) 4- r3 4- r-
4-m)
T3(g _J_ 1) _|_ r(l _|_ IQ _|_

+ 00 + Z - 1°
4- 1) 4- a2(2Z + 1) 4- a3 4-
4- m) — 1 6

4-1)4- 2a2Z 4~ «Z- (c 4-
+ 1)4- &?ft 4- a3 a

f- a2(n _(_ 1) _j_ n2(a _|_ 1) _J_

4- n)(a 4- 0

Addition

3Z2rc 4- n2(2Z - 3)
l(m - I)

Z2n 4- n2(Z + c -
l(m — 1) + n(l

Z2(r - 1) 4- r*(l -
r(m - 1)

r3 4- r\g - 1) +
lc - 0 - 2c &

2Z2(a 4- 1) 4- l(m

Z2(2a 4- 1) 4- azl -
a(l 4- mZ) 4- Z -

2a3 - 3a2 4- nz(a
n(a2 4- Z - 3) -

4- n3 4- w(l - 21) 4-

2) 4- n3 4- 2cn(Z - 1) 4-
_ 1 \ 6

- 1) 4- ^ 4- Z(r - 2) 4-

r(^£ -j-^.!-^ _ 1)4-

- 3) + a3

- aZ(2 - e) 4- a3 - a2 4-
- ac&

4- 1) 4- m(a 4- Z) 4-
- 1

Recipr.

n

n

r

r

a

a

2a

a Coefficient c = 1, 3, 6, respectively, for truss, framework composed of members with no torsional stiffness, and framework composed of members
possessing a finite torsional stiffness.

& For a framework composed of members possessing a finite torsional stiffness 0 = 4, g = g — 1, c = c — 1.

parameters l,m,n (or Z,r,m), one could compute a "break
even" value of parameter a above which the recomputation
ab initio becomes more economical in terms of the number
of arithmetical operations, than the modification method.
This break even value, however, would be of rather academic
interest, since the number of elements altered in a routine
step-by-step design process is rather small, for practical
reasons.

As far as the number of loading cases m is concerned, its
influence on the results shown in Tables 3 and 4, is imper-
ceptible if Z is large, because in the formulas of Table 2 it is
associated with lower power terms and usually, m <$C Z.

As far as the comparison between the parallel element and
initial strain approach is concerned, each of them may be
advantageous for a particular combination of the parameters.

One may compare the computer time of the arithmetical
operations for the two methods under standardized condi-
tions, using the example 2 of a framework shown in Fig. 2.
For this framework Z = 12(p2 + p), n = 6p2, r = 6(p +
I)2 — 6. Single loading case and modification altering one
beam only have been assumed, hence m = 1 and a = 6.
Time needed to complete j consecutive modifications, each
of them affecting another member, is evaluated. The result
is plotted on Fig. 3, which shows that under these conditions
the initial strain approach is more economic than the parallel
element concept, for limited (up to 17) number of subsequent
modifications; but for the large number of modifications the
time required by it increases rapidly for the reasons dis-
cussed in Sec. 4.2 and exceeds time required by the parallel
element method.

6. Storage Access Time

As it has been pointed out in Sec. 5 [Eq. (21)], a certain
amount of information may have to be retrieved from the

storage devices for execution of each consecutive modification.
It appears from the Eq. (21) that the matrices Fi,BX)BfQ
and (B^FiBx)"1 are the ones to be retrieved for the FM/
PEM mode of operation. The matrix FI, however, is so
sparsely populated that not only need it not be transferred
to the storage, but it may not, and in an efficient program
should not, appear as a matrix at all. It may be replaced by
a special routine which is called whenever a matrix operation
involving FI is to be performed. The routine is simple to
write on the basis of a quasi-diagonal structure of the matrix
FI, consisting of the submatrices, which may be written in a
typical form:

/ flexibility \ /dimensionless matrix standard for the\
V parameter / \ structural element of a given type /

for instance

QEI I -

for a beam as in example Fig. la. Thus, all that is needed
is a value of that flexibility parameter and sort of a code
number identifying the type and consecutive number of an
element, in order to associate the flexibility parameter with
the proper standard dimensionless matrix built into the
operational part of the program.

Thus, only 2 numbers per structural element have to be
stored instead of the full matrix FI. Let Zi denote twice the
number of elements. That leaves the matrices Bx,Bfo, and
(BtFBx)"1 to be retrieved. They have the dimensions
(I X ri), (I X m), and (n X n), respectively, hence the number
of words to be transmitted is

N = n(l + ri) + Im + Zi

TableS Example 1:

Computer time, t
*PTPMa*FM« *DM« ^M

fc*FM&

948fe)3 0.60
viuv""*/ " uz

semimonocoque fuselage

Reduction of computer time

*PEM«
*DM&

0.415 , . , .—— (a 4- 1)uz

ISA0

*FMfe

0.0062 , , , ,——— (a 4- 1)uz

ISA0

*DM&

0.0042, ,——— (a 4-uz 1)

a For the particular example r — 3uz — 6; I = 7uz — 3w; n = uz — 2u + 6; m = 1.
, , , ,. time of modif. algorithm& Reduction of computer time = -———-—————-——:———-.

time of repeated orig. sol.
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log T Fig. 3 Comparison of the
computer time = T-10 ~6 • t
required to complete j
consecutive modifications.

Time for the retrieval T is the sum of the reading time TR
and average access time Ta to the first word of the array.
The first one is Af /reading rate, the second is a constant.

It is useless to attempt a general discussion of the influence
of the retrieval time because of the large variety of storage
devices, which create innumerable combinations with the
various digital computers. It may, however, be interesting
to refer to a particular numerical example to demonstrate the
orders of magnitude. Assume the use of example 2 (Table
4) with p = 5 and m = 3, computer IBM/360-50, and
storage device IBM/2911 Disc Storage Drive.

According to Ref . 14, the unit t (time of a simple addition)
is equal to 6.88 -10~6 sec, Ta = 75.10"3 sec, and reading rate
= 156.103/4 words/sec. All this data is applicable for a
single precision computation.

From Table 2, time for the arithmetical operations may
be obtained for a single modification by means of PEM :

TPEM = 4032.54-6.88-10~6 sec = 17.35 sec

Retrieval time T is for N = 6-52[12(52 + 5) + 6-52] + 1080 +
60

0.075 = 2.055 sec.156/4

So it constitutes about 11% of the arithmetical time.
Thus, the actual total computer time of the arithmetical
operations and the retrieval will be 19.38 sec. This gives an
idea as to the deviation from Table 3 results for the com-
puter time reduction, which are to be expected due to the
retrieval time. Similar results may be obtained for DM
and ISA. From the preceding, one may conclude that the
time for the arithmetical operations dominates, so that the
influence of the time of the storage communications, how-
ever perceptible, seems not to be strong enough to qualita-
tively change the results shown in Tables 3 and 4.

To complete this consideration, one has to mention a case
when matrices are so large that some of the operations in
Eq. (21) have to be carried out by means of partitioning and
storage/retrieval of the intermediate results. However,
this will cause the time to increase in absolute values, similarly
the total time of the original solution will increase; therefore,
it seems reasonable to expect no significant change in the
relative reduction of computer time as defined in Tables 3
and 4 with the corrections resulting from the particular
example given. Practical significance of a more general
theoretical investigation of the matter is doubtful due to a
very large variety of possible program organizations for this
case of extremely large matrices.

Another example of the actual computer time may be given
for the fuselage — example 1 of Table 3. For instance for
z = u = 12 and unit t = 6.88 -lO"6 sec (IBM 360-50, Ref.
14) one obtains the actual computer times: time for FM =
1330 sec = 22.1 min. Ratio *PEM/*FM for a = 1, 2, 9 is,

respectively, 0.003, 0.0045, 0.03; hence time for PEM
modification is 6 sec, 9 sec, 60 sec. This example demon-
strates the practical significance of the modification time
reduction problem, for instance, to a designer using a com-
puter as a design aid, by means of a light pen/screen, as an
input/output device. For a designer, a 22.1 minute wait
(recomputation ab initio) to see the result of the modifica-
tion on the screen would be rather unacceptable, whereas
a less than 10 sec period (special modification algorithm) is
felt as almost instant reaction, radically expediting the whole
process.

7. Accuracy of the Modification Algorithm
There has been a relatively large experience accumulated as

to the initial strain approach including accuracy data.
Therefore, the accuracy consideration were limited within
the present work to the proposed algorithm of a parallel
element. Accuracy was tested by means of computer ex-
periments on typical structures.

The program written in FORTRAN IV as a standard
subroutine stored on a disk was tested on an IBM 360-50 for
redundant truss, framework, and semimonocoque structures,
thus all three of the most important main types of structures
were tried. Several variants of the tests were performed as
follows: 1) first the internal forces for several variants of
member flexibility distribution were calculated directly for
each structure; 2) then the same variants were examined
as created by consecutive modifications starting from a certain
original structure and solutions were compared with the direct
ones. Each modification chain was closed by a modification
providing a return to original state. The number of modifica-
tions in one chain "from original to original" varied from 5
to 65. Member flexibility was modified by a factor varying
from 105 (practical removal of a member) to 10 ~5 (practical
rigidization).

The number of elements altered in one modification varied
from one to all members of the modified structure. The
largest error did not exceed 0.1/1000 and the errors indicated
random scatter with no accumulation of some particular
tendency.

Accuracy of the method does not seem to be affected at
all by the magnitude of modification (relative flexibility
change, number of modified members) and is more than
satisfactory for engineering applications.

8. Conclusions
The following conclusions may be significant for the

organization of the matrix algorithms for such problems as
structural optimization, nonlinear analysis by means of a

Table 4 Example 2: framework

Computer time of arith. operations, t
FM DM PEM ISA

* 14700p6

** 7400p6

*PEM
*FM
0.5
pz

ISA
*FM
0.068

7500p6

1400p6

Reduction of
**P#M&

**FM
0.58

7>2

ISAC

**FM
0.145

8064p4

4032p4

computer time0

*PEM
*DM
1.08

p2

ISA
*DM
0.134

1008p4

**PEM
**DM

2.9
p2

ISA
**DM
0.72

p» P« P2 p»

« Reduction of computer time = time of modif. algorithm ^
time of repeated orig. sol.

& For instance if v = 10; **PEM/**FM = 0.0058.
c For instance, if p = 10; ISA/**FM = 0.00145.
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step-by-step modification of the initial linear solution, or
computer-aided design.

1) The proposed modification algorithm may cooperate
with both force and displacement methods being used for
the original solution and may also handle entirely new ele-
ments attached to the structure. The algorithm provides
very significant computer time reductions of the order 100,
1000, or more for large structures. Its accuracy was tested
and found very good. Substantial time reductions may also
be achieved due to the sparsity of matrix population and
proper use of the associative law of matrix multiplication.

2) Comparison of the algorithm with the commonly known
method of initial strain approach shows the latter as more
economical for a small number of modifications. For larger
numbers of consecutive modifications, however, the parallel
element method provides larger time savings and the differ-
ence increases very rapidly in its favor with the increasing
of that number.
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